Semantic Smoothing for Bayesian Text Classification with Small Training Data

نویسندگان

  • Xiaohua Zhou
  • Xiaodan Zhang
  • Xiaohua Hu
چکیده

Bayesian text classifiers face a common issue which is referred to as data sparsity problem, especially when the size of training data is very small. The frequently used Laplacian smoothing and corpus-based background smoothing are not effective in handling it. Instead, we propose a novel semantic smoothing method to address the sparse problem. Our method extracts explicit topic signatures (e.g. words, multiword phrases, and ontologybased concepts) from a document and then statistically maps them into single-word features. We conduct comprehensive experiments on three testing collections (OHSUMED, LATimes, and 20NG) to compare semantic smoothing with other approaches. When the size of training documents is small, the bayesian classifier with semantic smoothing not only outperforms the classifiers with background smoothing and Laplacian smoothing, but also beats the state-of-the-art active learning classifiers and SVM classifiers. In this paper, we also compare three types of topic signatures with respect to their effectiveness and efficiency for semantic smoothing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantics-based Language Models for Information Retrieval and Text Mining

Semantics-based Language Models for Information Retrieval and Text Mining Xiaohua Zhou Xiaohua Hu The language modeling approach centers on the issue of estimating an accurate model by choosing appropriate language models as well as smoothing techniques. In the thesis, we propose a novel context-sensitive semantic smoothing method referred to as a topic signature language model. It extracts exp...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008